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for some N. The only difficulty in the proof of these statements, beyond
the methods already used in §§1-4, is the possibility that surfaces in $3
may have boundary values which are constant on some arcs of the circum-
ference.

Statement (1) yields a modified Morse theory; the usual requirement is
that every k-cap contain a minimal surface g for which D [g] = a. But by
assigning type numbers to blocs of minimal surfaces, the usual Morse rela-
tions hold.

1 [1] Shiffman, "The Plateau Problem for Non-Relative Minima," Ann. Math., 40,
834-854 (1940); [2] Morse and Tompkins, "The Existence of Minimal Surfaces of
General Critical Type," Ibid., 40, 443-472 (1940); [3] Courant, "Critical Points and
Unstable Minimal Surfaces," these PROCEEDINGS, 27, 51-57 (1941); [4] Morse and
Tompkins, "Minimal Surfaces Not of Minimum Type by a New Mode of Approxima-
tion," Ann. Math., 42, 62-72 (1941); and "The Continuity of the Area of Harmonic
Surfaces as a Function of the Boundary Representations," Am. Jour. Math., 63, 825-838
(1941).

2 Cf. [3 ].
8Cf. [4].
4 See Rado, "On the Problem of Plateau," Ergeb. Math., 2, 45-47 (1933).
1f The uniformity of the convergence may be eliminated since it is a consequence of

L"(1) --o L - (1).
6 Cf. Shiffman, "The Plateau Problem for Minimal Surfaces Which Are Relative

Minima," Ann. Math., 39, 311-312 (1938).
7 This theorem is capable of very wide generalizations.
8 In 15 this metric is equivalent to the uniform metric.
9 15a consists of those surfaces X of 3 for which D [X] . a.
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1. The purpose of this note is to determine the structure of general
measure algebras.

2. For any Boolean a-algebra M, let M be the least cardinal number
which is the power of a a-basis of M. M is homogeneous, if L = Mfor every
(principal) ideal L C M different from the null ideal. A Boolean a-

algebraM = o0 ; a, b, c,.. .. _ e } is a measure algebra, if there is defined
on M a measure function (that is, a countably additive real non-negative
function) ,u(a) such that (i) 0< ,u(e) < c, (ii) ,(a) = 0 if and only if a = 0.
We also assume that there is no atomic element in M, i.e., (iii) a > 0 im-
plies the existence of a b eM such that 0< b < a
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An example of a homogeneous measure algebra is the Boolean algebra
P(7y) of all measurable sets (mod. null sets) of an infinite product space
Qz = Po <a<.,Iaofintervals _ < 1 where a and y are ordinal
numbers and the measure on Qy is defined multiplicatively in terms of the
ordinary Lebesgue measure on each Ia.

If y < -y', then P('y) may be considered as a a-subalgebra of P(y').
This embedding is obtained by identifying each subsetE of O ,, with the cyl-
inder set E X P., < a < w"a in the product space Q.,, = Q-Y X PR, < a < yIa.
Two measure algebras are isomorphic, if there exists a measure-preserving

o--isomorphism between them. It is easy to see that, for any infinite
ordinals y and y', two measure algebras P(Qy) and P(-y') are isomorphic if
and only if ry and y' correspond to the same cardinal. Moreover, if z is
finite or corresponds to No, then P(7y) is isomorphic to P(1), i.e., to the
measure algebra of Lebesgue measurable sets (mod. null sets) of the interval
I- O<x< 1.
THEOREM 1. Every homogeneous measure algebra with u(e) = 1 is iso-

morphic to P(yo), where 'yo is the least ordinal number corresponding to M.
This theorem will be proved by transfinite induction. It will be suffi-

cient to prove the following
LEMMA 1: Let L be a a-subalgebra of a homogeneous measure algebra M

with ,u(e) = 1 such that L < M, and assume that L is isomorphic to P('y),
where y is an ordinal corresponding to L. Then, for any a e M with a e L,
there exists a a-subalgebra L' of M such that L CL', a e L', and L' is iso-
morphic to P(,y + 1), in such a way that this isomorphism is an extension of
the given isomorphism ofL and P(-y).
The proof of this lemma will be given in section 4.
3. Let us assume the conditions of Lemma 1. We can consider .,

as a representation space of L = P(Qy). Then, by a theorem of Radon-
Nikodym, there exists, for any a e M, a measurable function jpa(t) defined
on Q.y such that 0 < P(p) < 1, and fEXSa(A)dt = ,(a A x) for any x e L,
where Ex is a measurable set of f., which corresponds to x e L. An element
a e M is called independent of L, if we have spa() = constant [namely, =
ju(a)] almost everywhere (a. e.) on O.,. This is equivalent to saying that
we have ,u(a A x) = ,u(a) ,u(x) for all x e L.
LEMMA 2: For any measurable function x(t) defined on Q ,, with O _ x(t)
q(PA) a. e. on 9Zp there exists a b eM such thatO . b < a andsb(t) = x(t)

a. e. on Q.
Proof of Lemma 2.-Our lemma is clear if x(t) = 0 a. e. on Qly. Hence

we may assume that meas[[t:X() > 0] > 0. Because of the principle of
exhaustion, it is sufficient to show that there exists a b* e M such that 0 <
b* < a and VP*(t) x(t) a. e. on Q.,

LetA be the principal ideal generated by-a and let L(a) be the c-subalge-
bra ofM generated by L and a. Since L(a) = L < A = M by assumption,
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there exists a bleMsuch that b1 e A and b e L(a). This means that meas[t:
0< ObA(t)< ja(a)] > 0. Again,bytheprincipleofexhaustion,we can
further find a b2 e M such that 0< b2 < a and 0< °b2(A) < sPa(t) a. e. on the
set [t :Pa(,) > 0]. Let us denote by cl and c2 the elements of L which
correspond to the sets [t:0 < PNb2() _ 2-1(Pa(;)] and [:2-1'Pa(t) < iP&W <
VPa()]. If we now put b3 = (cl A b2) V (c2 A (a - b2)), then 0 < b3 < a
and we have 0< obA($) _ 2'- lOa() a. e. on the set [ Va(t) > 0]. Byiter-
ating this argument, we can find, for each n, a bn + 2 e M such that 0 < bn + 2
< a and 0 < obn+22(t) < 2-"n(a) a. e. on the set [t:f(t) > 0]. Take n
so large that meas E* > 0, where E* = [t:2`(op(Q) _ x(t)], and denote by
c* the element of L which corresponds to E*. If we put b* = c* A bt + 2,
then we have 0 < b* < a, and VPb*( ) = 'Pbn+ 2(e) < 2 'V(.) < X( ) a. e.
on E*, and Vob*(Q) = 0 a. e. on y- E*. Hence (Ob*(O) _ X(t) a. e. on
Qz and this proves Lemma 2.

4. Proof of Lemma 1. Let An be the set of all finite sequences a = tel,
.en}, where ei = O or 1, i = 1,..., n; and let A = U = 1 An. A count-

able set {a6 I (8 e A) is a dyadic decomposition of a if aO V a, = a,
ao A a, = 0, and aa, 0 V a5, 1 = aa, aa, 0 A a5, 1 = Ofor all e A. By Lemma
2, there exists for any a e M, a dyadic decomposition {a I}(S e A) of a
such that Va6(Q) = min.(Va(Q), ej/2 + ... + en/2" + 1/2n) - min. ('a(A),
e1/2 + . . . + En/2') a. e. on Qz for all 8 = k, . . ., e,I}eA. In the same way,
there exists a dyadic decomposition {a' I}(6e A) of a' = e - a such that

YaG'(a) = max. (VPa(), 61/2 + ... + en/2" + 1/2") - max. (soaQ) q/2 +
. . . + en/2") a. e. on Us for all a =e8 . . ., in I e A. Let us put ba = as V
a', for all a e A. Then {b5}(8 e A) is a dyadic decomposition of the unit
element e, and each ba is independent of L, since we have clearly (Pb5() =

PaG( ) + aa( ) = 1/2" a. e. on Q for all a e A., n = 1, 2,....
Now let L' be the a-subalgebra of M generated by L and bI (8S A).

L' is obtained by completing the finite algebra L* consisting of all elements
of M of the form: b(') = V 6an.(bs A cs), where cae L for all 8 e A", n =

1, 2.... It is easy to see that L' is isomorphic to P(y + 1) by an iso-
morphism which is an extension of the given isomorphism of L and P(Y).

Finally, in order to prove that a e L', consider the set [t: fa(t) _ 61/2 +
+ fn/2n + 1/2 nj for each 8 = {61,..., en}eA, and let ca be the corre-

sponding element of L. If we put b") = V ,(ba A ca), then we have b(l) <
b(2) . ... < b( . ... < a and,u(a-b()) . l/2"forn = 1, 2, .... Hence
we have a = V n =lb(') and consequently a e L'. This proves Lemma 1
and so Theorem 1.

5. A measure algebra M is a direct sum of (a finite or countably infinite
number of) measure algebras M., if each Mn is (isomorphic to) a principal
ideal of M and if every element a e M is uniquely expressed in the form:
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a = V n= lan,am \A an = O(m $ n), where an eMn n = 1, 2, .... (This last
condition is equivalent to saying that the unit elements en of Mn, which are
elements of M, satisfy em A en = 0 (m P n) and e = V n -le,.)
THEOREM 2. Every measure algebra is a direct sum of homogeneous

measure algebras M.(n = 1, 2, . .. , finite or countably infinite).
The proof of Theorem 2 is easy and will be omitted.
Theorems 1 and 2 indicate the structure of a general measure algebra.
6. The ergodicity of a measure preserving u-automorphism T of a

measure algebra M (onto itself), or that of a group G = I T} of such a-
automorphisms, can be defined as usual.
LEMMA 3. In order that the group of all measure preserving o-automor-

phisms of a measure algebra M be ergodic on M, it is necessary and sufficient
that M be homogeneous.
The proof of this lemma is easy and is omitted.
THEOREM 3. Let M be a measure algebra, and let G be the group of all

measure preserving o-automorphisms of M. Then M is a direct sum of a
countable number of invariant principal ideals M", on each of which G is
ergodic. This decomposition is the same as in Theorem 2.

Let G be an arbitrary group of measure preserving o-automorphisms of
M. Then the set LG of all a eM such that T(a) = a for all Te G, is a a-
subalgebra of M. Conversely, for any a-subalgebra L C M, consider the
set GL of all measure preserving a-automorphisms T of M such that T(a) =
a for all a e L. GL is clearly a group. It is also clear that L 5 LGL and
G 5 GLG. Exactly as in the theory of Galois, we may ask the question:
Under what conditions do the equalities L = LGL and G = GLG hold?
These and related problems will be discussed elsewhere.

I am greatly indebted to Shizuo Kakutani, who revised and improved
my original manuscript.
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